180 research outputs found

    PD2T: Person-specific Detection, Deformable Tracking

    Get PDF
    Face detection/alignment has reached a satisfactory state in static images captured under arbitrary conditions. Such methods typically perform (joint) fitting independently for each frame and are used in commercial applications; however in the majority of the real-world scenarios the dynamic scenes are of interest. Hence, we argue that generic fitting per frame is suboptimal (it discards the informative correlation of sequential frames) and propose to learn person-specific statistics from the video to improve the generic results. To that end, we introduce a meticulously studied pipeline, which we name PD\textsuperscript{2}T, that performs person-specific detection and landmark localisation. We carry out extensive experimentation with a diverse set of i) generic fitting results, ii) different objects (human faces, animal faces) that illustrate the powerful properties of our proposed pipeline and experimentally verify that PD\textsuperscript{2}T outperforms all the compared methods

    A Comprehensive Performance Evaluation of Deformable Face Tracking "In-the-Wild"

    Full text link
    Recently, technologies such as face detection, facial landmark localisation and face recognition and verification have matured enough to provide effective and efficient solutions for imagery captured under arbitrary conditions (referred to as "in-the-wild"). This is partially attributed to the fact that comprehensive "in-the-wild" benchmarks have been developed for face detection, landmark localisation and recognition/verification. A very important technology that has not been thoroughly evaluated yet is deformable face tracking "in-the-wild". Until now, the performance has mainly been assessed qualitatively by visually assessing the result of a deformable face tracking technology on short videos. In this paper, we perform the first, to the best of our knowledge, thorough evaluation of state-of-the-art deformable face tracking pipelines using the recently introduced 300VW benchmark. We evaluate many different architectures focusing mainly on the task of on-line deformable face tracking. In particular, we compare the following general strategies: (a) generic face detection plus generic facial landmark localisation, (b) generic model free tracking plus generic facial landmark localisation, as well as (c) hybrid approaches using state-of-the-art face detection, model free tracking and facial landmark localisation technologies. Our evaluation reveals future avenues for further research on the topic.Comment: E. Antonakos and P. Snape contributed equally and have joint second authorshi

    Motion deblurring of faces

    Get PDF
    Face analysis is a core part of computer vision, in which remarkable progress has been observed in the past decades. Current methods achieve recognition and tracking with invariance to fundamental modes of variation such as illumination, 3D pose, expressions. Notwithstanding, a much less standing mode of variation is motion deblurring, which however presents substantial challenges in face analysis. Recent approaches either make oversimplifying assumptions, e.g. in cases of joint optimization with other tasks, or fail to preserve the highly structured shape/identity information. Therefore, we propose a data-driven method that encourages identity preservation. The proposed model includes two parallel streams (sub-networks): the first deblurs the image, the second implicitly extracts and projects the identity of both the sharp and the blurred image in similar subspaces. We devise a method for creating realistic motion blur by averaging a variable number of frames to train our model. The averaged images originate from a 2MF2 dataset with 10 million facial frames, which we introduce for the task. Considering deblurring as an intermediate step, we utilize the deblurred outputs to conduct a thorough experimentation on high-level face analysis tasks, i.e. landmark localization and face verification. The experimental evaluation demonstrates the superiority of our method

    Unsupervised Controllable Generation with Self-Training

    Get PDF
    Recent generative adversarial networks (GANs) are able to generate impressive photo-realistic images. However, controllable generation with GANs remains a challenging research problem. Achieving controllable generation requires semantically interpretable and disentangled factors of variation. It is challenging to achieve this goal using simple fixed distributions such as Gaussian distribution. Instead, we propose an unsupervised framework to learn a distribution of latent codes that control the generator through self-training. Self-training provides an iterative feedback in the GAN training, from the discriminator to the generator, and progressively improves the proposal of the latent codes as training proceeds. The latent codes are sampled from a latent variable model that is learned in the feature space of the discriminator. We consider a normalized independent component analysis model and learn its parameters through tensor factorization of the higher-order moments. Our framework exhibits better disentanglement compared to other variants such as the variational autoencoder, and is able to discover semantically meaningful latent codes without any supervision. We demonstrate empirically on both cars and faces datasets that each group of elements in the learned code controls a mode of variation with a semantic meaning, e.g. pose or background change. We also demonstrate with quantitative metrics that our method generates better results compared to other approaches

    On the Convergence of Encoder-only Shallow Transformers

    Full text link
    In this paper, we aim to build the global convergence theory of encoder-only shallow Transformers under a realistic setting from the perspective of architectures, initialization, and scaling under a finite width regime. The difficulty lies in how to tackle the softmax in self-attention mechanism, the core ingredient of Transformer. In particular, we diagnose the scaling scheme, carefully tackle the input/output of softmax, and prove that quadratic overparameterization is sufficient for global convergence of our shallow Transformers under commonly-used He/LeCun initialization in practice. Besides, neural tangent kernel (NTK) based analysis is also given, which facilitates a comprehensive comparison. Our theory demonstrates the separation on the importance of different scaling schemes and initialization. We believe our results can pave the way for a better understanding of modern Transformers, particularly on training dynamics

    Unsupervised Controllable Generation with Self-Training

    Get PDF
    Recent generative adversarial networks (GANs) are able to generate impressive photo-realistic images. However, controllable generation with GANs remains a challenging research problem. Achieving controllable generation requires semantically interpretable and disentangled factors of variation. It is challenging to achieve this goal using simple fixed distributions such as Gaussian distribution. Instead, we propose an unsupervised framework to learn a distribution of latent codes that control the generator through self-training. Self-training provides an iterative feedback in the GAN training, from the discriminator to the generator, and progressively improves the proposal of the latent codes as training proceeds. The latent codes are sampled from a latent variable model that is learned in the feature space of the discriminator. We consider a normalized independent component analysis model and learn its parameters through tensor factorization of the higher-order moments. Our framework exhibits better disentanglement compared to other variants such as the variational autoencoder, and is able to discover semantically meaningful latent codes without any supervision. We demonstrate empirically on both cars and faces datasets that each group of elements in the learned code controls a mode of variation with a semantic meaning, e.g. pose or background change. We also demonstrate with quantitative metrics that our method generates better results compared to other approaches

    The 3D Menpo Facial Landmark Tracking Challenge

    Get PDF
    This is the final version of the article. It is the open access version, provided by the Computer Vision Foundation. Except for the watermark, it is identical to the IEEE published version. Available from IEEE via the DOI in this record.Test descriptionRecently, deformable face alignment is synonymous to the task of locating a set of 2D sparse landmarks in intensity images. Currently, discriminatively trained Deep Convolutional Neural Networks (DCNNs) are the state-of-the-art in the task of face alignment. DCNNs exploit large amount of high quality annotations that emerged the last few years. Nevertheless, the provided 2D annotations rarely capture the 3D structure of the face (this is especially evident in the facial boundary). That is, the annotations neither provide an estimate of the depth nor correspond to the 2D projections of the 3D facial structure. This paper summarises our efforts to develop (a) a very large database suitable to be used to train 3D face alignment algorithms in images captured "in-the-wild" and (b) to train and evaluate new methods for 3D face landmark tracking. Finally, we report the results of the first challenge in 3D face tracking "in-the-wild".The work of S. Zafeiriou and A. Roussos has been partially funded by the EPSRC Project EP/N007743/
    • …
    corecore